

Rapport Seleksjon i 4-panels enkeltristseksjon med- og uten løftepanel

Rapport fra fullskalaforsøk gjennomført ombord på tråleren "Ramoen" i perioden 28. oktober - 10. november 2013. Toktet ble gjennomført i regi av Utviklingsseksjonen ved Fiskeridirektoratet.

Forfattere

A23178 - Åpen

Eduardo Grimaldo, SINTEF Fiskeri og Havbruk, faglig ansvarlig Dagfinn Lilleng, Fiskeridirektoratet, toktleder Terje Jørgensen, Havforskningsinstituttet Manu Sistiaga, SINTEF Fiskeri og Havbruk Bent Herrmann, SINTEF Fiskeri og Havbruk

SINTEF Fiskeri og Havbruk AS Fiskeriteknologi

2014-03-28

SINTEF Fiskeri og havbruk AS

Postadresse: Postboks 4762 Sluppen 7465 Trondheim

Sentralbord: 40005350 Telefaks: 93270701

fish@sintef.no www.sintef.no/fisk Foretaksregister: NO 980 478 270 MVA

Rapport

Seleksjon i 4-panels enkeltristseksjon med og uten løftepanel

Rapport fra fullskala forsøk gjennomført ombord på tråleren "Ramoen" i perioden 28. oktober - 10. november 2013.

VERSJON	DATO
1.0	2014-03-28
FORFATTERE	
Eduardo Grimaldo	
Dagfinn Lilleng	
Terje Jørgensen	
Manu Sistiaga	
Bent Herrmann	
OPPDRAGSGIVER(E)	OPPDRAGSGIVERS
Fiskeridirektoratet, v/Utviklingsseksjonen	Dagfinn Lilleng
Fiskeri- og Havbruksnæringens Forskningsfond (FHF)	Rita Maråk

Norges Forskningsråd, HAVKYST programmet

REF. Christian Wexels Riser

PROSJEKTNR SFH 6020825

ANTALL SIDER OG VEDLEGG: 28

PROSJEKTLEDER Manu Sistiaga

KONTROLLERT AV Svein Helge Gjøsund

GODKJENT AV (STILLING, NAVN) Forskningssjef, Vegar Johansen

RAPPORTNR ISBN A25901 978-82-14-05710-2

SIGNATUR SIGNATUR GNATUR

GRADERING DENNE SIDE Apen

GRADERING

Åpen

EMNEORD: Fiskeri

Redskapsteknologi Trål Seleksjon Torsk Enkeltrist

Historikk

VERSJON	DATO	VERSJONSBESKRIVELSE
1.0	28.03.2014	

FISKERIDIREKTORATET

Innholdsfortegnelse

1	Innle	edning	6
	1.1	Bakgrunn for forsøket	6
	1.2	Forsøkets hovedmål	9
2	Mate	eriale og Metoder	9
	2.1	Fartøy	9
	2.2	Trål	10
	2.3	Firepanels stålristseksjoner	10
	2.4	Firepanels fleksiristseksjon	12
	2.5	Forlengelser og sekkene	14
	2.6	Oppsamlingspose	14
	2.7	Seleksjonsanalyse	16
3	Resu	ıltater	
	3.1	Operasjonelle data	17
	3.2	Seleksjonsresultater	20
	3.3	Løftepanelets betydning for seleksjon av torsk	22
	3.4	Løftepanels betydning for seleksjon av hyse	22
	3.5	Undervannsobservasjoner	23
	3.6	Erfaringer med den nye fleksiristseksjonen	23
4	Disk	usjon og konklusjoner	23
4 Ann	Diskı eks A:	usjon og konklusjoner Monteringsspesifikasjoner for 4-panels enkeltristseksjon	23 26

SAMMENDRAG

Resultatene fra toktet viste at løftepanelet foran sorteringsristen hadde en betydelig effekt på parameteren C_{grid} , dvs. sannsynligheten for at en fisk kommer i kontakt med rista, og dermed på seleksjonen av torsk. Forskjellen i virkningen av løftepanelet på kontakten (C_{grid}) mellom en seksjon med- og uten løftepanelet er: 0,16 (0.82-0.66) med konfidenseintervall (0,09 til 0,23). Dette betyr at løftepanelet øker kontaktsannsynligheten C_{grid} med 0.16, dvs en økning på 24 % fra 0.66 til 0.82. Løftepanelet har altså en betydelig effekt på kontaktsannsynligheten. I praksis betyr dette at en god del mer småtorsk blir fanget og ender i sekken når det fiskes med en ristseksjon uten løftepanel. Det ble ikke observert blokkering av 4-panels ristseksjonen ved høye fisketettheter, selv med fangstrater på opptil 20 tonn pr. time. Dette kan skyldes bedre gjennomstrømning i seksjonen fordi det det modifiserte løftepanelet ble laget med 80 mm kvadratmasker i stedet for 60 mm diamantmasker, bruk av et betydelig mindre løftepanelet sammenlignet med det som brukes i en 2-panels ristseksjon, og ikke minst på grunn av et større tversnittareal når seksjonen er laget med fire panel. Mengdesensorene montert på sekken ga imidlertid fortsatt ikke et korrekt bilde av totalfangsten.

AVFORSKNINGSINSTITUTTE

1 Innledning

1.1 Bakgrunn for forsøket

Bunntrålene som i dag benyttes i fisket etter torsk, hyse og sei har økt i størrelse de senere årene som følge av større fartøy med større maskinkraft og økt produksjonskapasitet, Dette medfører at de sorteringsrist-konseptene som ble utviklet på 90 tallet (Sort-X, enkeltrist, og fleksirist) ikke har tilstrekkelig kapasitet i de tilfellene det tas store fangster. Problemstillingen er særlig relevant i fisket etter torsk i Barentshavet, da fangsttilgjengeligheten nå er svært god som følge av bestandssituasjonen.

Undervannsopptak under trålfiske har vist at fisk i gitte tilfeller kan samle seg i store mengder både foran og bak rista, og at den ikke umiddelbart faller bakover i sekken, slik at fangstmengdesensorer ikke gir et riktig bilde av fangstmengden under tråling. Forsøk med en foreslått innretning for fangstbegrensing har videre vist at denne ikke fungerer tilfredsstillende i kombinasjon med ristseksjon (http://www.imr.no/nyhetsarkiv/2012/oktober/begrenser_fangstmengde_under_traling/nb-no).

En sorteringsristseksjon med diverse kombinasjoner av rist og løfte- og ledepaneler vil medføre en blokkering og redusering av strømningshastigheten. Det antas at denne hastighetsreduksjonen er grunnen til at fisk begynner å samle seg opp ved rista, noe som medfører en ytterligere reduksjon i strømningen og videre oppsamling av fisk fremover i trålseksjonen (se også Valdemarsen et al., 2011). En redusert hastighet vil også redusere effektiviteten til fangstmålere montert på trålsekken og innretninger for fangstbegrensing basert på hydrodynamisk trykk.

Figur I. Ekkoloddregistrering (5-m ekspansjonsvindu) som viser høy forekomst av torsk (til venstre), og størrelsen på fangsten tatt i løpet av få minutters tråling på samme felt (til høyre) (Kilde: Ivan Tatone, Universitetet i Tromsø).

Figur 2. Undervannsopptak som viser store mengder fisk som samler seg bak ledepanelet i en 55 mm enkeltristseksjon (Kilde: Roger B. Larsen, Univ. i Tromsø).

Gjøsund et al. (2013) gjennomførte våren 2013 hastighetsmålinger i 2- og 4-panels fullskala ristseksjoner med og uten løftepanel i SINTEF Fiskeri og havbruks strømningstank i Hirtshals. Innledende teoretiske estimat og vurderinger av hastighetsreduksjon gjennom hhv. løftepanel, rist og ledepanel, indikerte at det er løftepanelet som i størst grad påvirker gjennomstrømningen, og at oppbygging av et grensesjikt langs veggen i hovedseksjonen også kan medføre en betydelig hastighetsreduksjon uavhengig av løftepanel, rist og ledepanel. Hastighetsmålingene ved forskjellige tverrsnitt bakover i ristseksjonene bekreftet disse hovedtrekkene. Gjennomstrømningen gjennom 2-panels-seksjonen ble betydelig forbedret ved å fjerne løftepanelet. 2-panels-seksjonen uten løftepanel hadde imidlertid samme overordnede geometri og avsmalnende form som den med løftepanel, dvs. med litevertikalt tverrsnitt, slik at grensesjiktet som utviklet seg påvirket en betydelig del av tverrsnittet allerede ved risten (Figur 3).

Figur 3. Plott av geometri og hastighetsprofil i en 2-panels enkeltristseksjon med løftepanel. En rute langs horisontalaksen tilsvarer $u_{rel} = 0.95$ m/s (Gjøsund et al., 2013)

PROSJEKTNR	RAPPORTNR	VERSJON	7 21/28
SFH 830237	A23178	2014-03-28	7 av 20

For 4-panels- seksjonen med løftepanel (Figur 4) var gjennomstrømningen vesentlig bedre enn for 2-panelseksjonen med løftepanel, og ikke dramatisk dårligere enn for 2-panelsseksjonen uten løftepanel. For 4panels- seksjonen uten løftepanel (Figur 5) ble hastigheten opprettholdt relativt godt bakover gjennom hele seksjonen, men med et merkbart grensesjikt under ledepanelet.

Figur 4. Plott av geometri og hastighetsprofil i en 4-panel enkeltristseksjon med løftepanel. En rute langs horisontalaksen tilsvarer $u_{rel} = 0.95$ m/s (Gjøsund et al., 2013).

Et annet tydelig og viktig funn var at løftepanelet var slakt og la seg direkte inntil og blokkerte store deler av risten. Dette var spesielt tilfelle for 2-panels- seksjonen, se Figur 6, men også i noen grad for 4-panelsseksjonen. For 2-panels-seksjonen ble også hovedseksjonens underpanel presset opp foran rista, slik at der bare var en svært trang passasje under rista.

Figur 6. Bilde av 2-panel ristseksjon som viser hvordan løftepanelet legger seg inntil rista og blokkerer den, og hvordan hovedseksjonens underpanel også presses opp foran og inntil rista (Gjøsund et al., 2013).

1.2 Forsøkets hovedmål

Hovedmålet med fullskalaforsøkene beskrevet videre i denne rapporten var å måle seleksjonsevnen på torsk til en 4-panels enkeltristseksjon med og uten løftepanel foran rista, samt å undersøke en eventuell oppsamling av fisk foran ristseksjonen ved store fiskekonsentrasjoner. Fisket ble gjennomført på kommersielle fiskefelt.

2 Materiale og Metoder

2.1 Fartøy

Tråleren "Ramoen" (66,7 m LOA, 14.6 m bredde og 5170 HP hovedmotor) (Figur 7) ble leid inn i perioden 28. oktober - 13. november 2013 til å gjennomføre et tokt med bunntrål i området rundt Hopendjupet (76-77° N, 28-32° Ø) (Figur 8). Fartøyet er egnet til slike forsøk fordi det har et stort og romslig dekk med to trålbaner og to separate mottaksbinger som tillater at fangsten fra de to trålposene kan holdes adskilt. Fabrikken har en kapasitet til å produsere filet av 60-70 tonn rund fisk pr. døgn. Fabrikken er godt tilrettelagt for prøvetaking av fangsten. Forskerne på toktet disponerte eget kar til fiskeprøver, samt elektronisk målebrett og vekt koblet til en PC på broen. Fartøyets eget komplette sett av trålsensorer ble brukt til å overvåke trålen under tråling. Fartøyets faste mannskap har bred erfaring med en rekke tråltyper (bunntrål, semi-pelagisk trål og flytetrål) og med å jobbe sammen med forskere på denne type tokt.

Figur 7: M/S "Ramoen" (Kilde: www.norwegianfrozenatsea.no).

PROSJEKTNR	RAPPORTNR	VERSJON	0 21/ 20
SFH 830237	A23178	2014-03-28	9 dv 20

Figur 8: Kartutsnitt avområdene det ble fisket i under forsøkene.

2.2 Trål

To SELSTAD 628 # tråler ble benyttet som enkelttrål i fisket etter torsk. Denne tråltypen har en omkrets på 628 masker (155 mm maskestørrelse), en fiskeline på 31,1 m og en headline på 48,9 m. Trålene ble rigget med fem seksjoner rockhopper: et 7.1 m midtgir laget av 21" gummiskiver og 8"x8" mellomstykker, festet 1-1; og fire 6.0 m sidegir laget av 21" gummiskiver og 8"x8" mellomstykker, festet 2 og 2.

Overgangen fra trålbelgen (to panel) til ristseksjonen (fire panel) ble laget av Euroline Premium PE notlin (Polar Gold), med 138 mm nominell maskevidde og 8 mm singel tråddiameter. Seksjonen var 35,5 masker lang, 160 masker i omkrets på to-panelssiden, og 104 masker i omkrets på fire-panel siden. Alle de fire leisene var laget av 40 mm Danline PE tau.

Begge trålene ble rigget med to 100 m lange sveiper (22 mm stålwire). To Injector Scorpion tråldører, hver på 9.5 m² og 4400 kg, ble brukt under forsøket.

2.3 Firepanels stålristseksjoner

To firepanelsseksjoner (Figur 9), hver med en 55mm enkeltrist (Figur 10 og 11), ble brukt under forsøket. Disse seksjonene ble laget av Euroline Premium PE netting (Polar Gold), med 138 mm nominell maskevidde og 8 mm singel tråddiameter. Seksjonen var 44.5 masker lang og 104 masker i omkrets. En av seksjonene hadde et ledepanel som ble laget av Euroline Premium PE netting (Polar Gold), med 80 mm nominell maskevidde og 3 mm singel tråddiameter, og ble montert som kvadratmasker. Alle de 4 leisene var laget av 40 mm Danline PE tau.

AVFORSKNINGSINSTITUTTET

Sorteringsristsystemet sett nedenfra

Figur 9: Firepanels enkeltristseksjon med en innmontert 55mm stålrist (Tegning: Eduardo Grimaldo).

PROSJEKTNR	RAPPORTNR
SFH 830237	A23178

Ytterramme: 20 mm bolt Tverrstag: 16 mm bolt Spiler: 12 mm bolt Småstag i hjørner: 12 mm bolt A1 og A2: Tverrstag for montering mot sideleis

Figur 10: Spesifikasjoner av 55mm sorteringsrist

Figur II: Spesifikasjoner for montering av 55 mm stålrist i firepanelsseksjonen (Tegning: Eduardo Grimaldo).

2.4 Firepanels fleksiristseksjon

En firepanelsseksjon med to store 55mm Fleksirister (Figur 12 og 13) ble brukt under forsøket. Denne seksjonen ble laget av Euroline Premium PE notlin (Polar Gold), med 138 mm nominell maskevidde og 8 mm singel tråddiameter. Seksjonen var 52 masker lang pluss overgang og 120 masker i omkrets inkl. leis. En av seksjonene hadde et ledepanel som ble laget av Euroline Premium PE notlin (Polar Gold), med 80 mm nominell maskevidde og 3 mm singel tråddiameter, og ble montert som kvadratmasker. Alle 4 leisene var laget av 40 mm Danline PE tau.

FISKERIDIREKTORATET 🔬 🖁

Figur 12: Firepanel fleksiristseksjon med overgang fra to- til firepanel (Tegning: Eduardo Grimaldo & Manu Sistiaga).

Figur 13: Vanlig fleksirist (til venstre) og nye store fleksirista (til høyre) (Tegning: Eduardo Grimaldo).

2.5 Forlengelser og sekkene

Forlengelsen (som også utgjorde overgangen fra 4-panels ristseksjon til 2- panels sekk) ble laget av samme Euroline Premium PE notlin (Polar Gold) som ristseksjonene. Forlengelsen var 35,5 masker lang, og hadde en omkrets på 84 masker i framkant (moti fire-panels siden) og 42 masker i bakkant. Alle de fire leisene var laget av 40mm Danline PE tau.

To stk. 2-panels diamantmaskesekker ble brukt under forsøket. De ble laget i av Nylon PA notlin, med 138 mm nominell maskevidde og 6 mm dobbel tråddiameter. De var 200 masker lange og 96 masker i omkrets. Leisene var laget av 40mm Danline PE tau. Bakerste del av sekken (ca. 12 m fra codline og bakover) var laget av 10 mm ø PE "Ultra cross" knuteløs notlin, med 138 mm nominell maskevidde. 24 mm ø Danline rundstrøpper ble montert langs sekken med en innbyrdes avstand på 1,2 m.

2.6 Oppsamlingspose

For å undersøke ristas sorteringsevne ble det benyttet en finmasket oppsamlingspose over ristutslippet. Posen ble laget av Ø2.2 mm 60 mm polyethylene (PE) netting (Ø2.2 mm Polar Gold) og hadde en total lengde på ca. 23 m. Hele posen var forsterket med et omliggende dobbelt 4mm 155mm PE nett (Figur 14). Samtidig ble sekkene blindet med et 14 meter langt PE innernett (Ø 2.2mm) med en maskevidde på 60 mm (festet innvendig) (Figur 15).

FISKERIDIREKTORATET

Figur 14: Beskrivelse av oppsamlingsposen(Tegning: Roger B. Larsen)

Figur 15: Illustrasjon av forsøksoppsettet, med den småmaskete oppsamlingsposen over ristutslippet og det småmaskete innernettet i sekken (Tegning: Manu Sistiaga).

PROSJEKTNR	RAPPORTNR	VERSJON	15 av 20
SFH 830237	A23178	2014-03-28	12 av 20

For hvert hal ble mellom 600 og 1200 torsk målt (lengde og vekt) fra hver sekk (hovedsekk og oppsamlingssekk) til laveste, nærmeste cm. Resten av torskene i halet ble talt. Det ble tatt minst tre delprøver av fangsten i måleprosessen.

2.7 Seleksjonsanalyse

Fisk som slapp gjennom rista ble samlet opp i den småmaskete oppsamlingsposen over rista (GC). Fisk som ikke slapp gjennom rista ble samlet opp i hovedsekken som var blindet med et småmasket innernett (CC).

Ristseleksjonen r(l) kan derfor utrykkes som:

$$r(l) = \frac{nCC_l \times qCC}{nCC_l \times qCC + nCC_l \times qCC}$$
(1)

hvor nGC_l er antall fisk av lengde l målt i den småmaskete dekknettssekken GC. Mens nCC_l er antall fisk av lengde l målt i sekken med småmasket innernett CC. qGC og qCC er andelen av fangsten i de to sekkene som ble målt. Størrelsesseleksjonen r_a (l, v) (Millar and Fryer 1999) for de enkelte hal kan anslås ved å minimere den negative log sannsynlighetsfunksjonen (l) med hensyn til parameteren v beskriver funksjonen r_a (l, v):

$$-\sum_{l} \left\{ nGC \times ln \left(\frac{qCC \times r_{a}(l,v)}{qCC \times r_{a}(l,v) + qGC \times (1 - r_{a}(l,v))} \right) + nCC \times ln \left(\frac{qGC \times (1 - r_{a}(l,v))}{qCC \times r_{a}(l,v) + qGC \times (1 - r_{a}(l,v))} \right) \right\}$$
(2)

Denne summering (Equation (2)) er utført over lengdeklasser. En passende modell for størrelse valg r_a (*l*, *v*) må finnes.

For å ta hensyn til at ikke nødvendigvis alle torsk var i stand til å komme i kontakt med risten og dermed ha en størrelsesavhengig unnslippelsessannsynlighet, ble resultatene for enkelt hal beskrevet med en særlig seleksjonsmodell *CLogit* av formen:

$$r(l, v) = clogit(l, L50_{grid}, SR_{grid}, C_{grid}) \equiv 1.0 - C_{grid} \times (1.0 - logit(l, L50_{grid}, SR_{grid})) , \qquad (3)$$

hvor seleksjonsparametrene $L50_{grid}$ og SR_{grid} utrykker størrelsesseleksjon for den andel av fiskene som faktisk kommer i kontakt med risten. C_{grid} utrykker kontaktsannsynligheten med risten. Hvis alle fiskene er i kontakt med risten er denne 1.0, mens en verdi på f.eks. 0,75 ville svare til at kun 75 % av fiskene faktisk kom i kontakt med risten og fikk deres størrelsesseleksjon bestemt av denne. C_{grid} bør derfor være tett på 1,0 for at seleksjonen skal fungere bra.

Ut fra formel (3) kan det vises at seleksjonsparametre som tar hensyn til at ikke alle fisk kommer i kontakt med risten kan utrykkes ved:

$$L50 = \frac{SR_{grid} \times ln(2.0 \times C_{grid} - 1.0)}{ln(9.0)} + L50_{grid}$$
(4)

PROSJEKTNR	RAPPORTNR	VERSJON	16 21/20
SFH 830237	A23178	2014-03-28	10 dv 20

$$SR = \frac{SR_{grid} \times ln\left(\frac{s.o \times (C_{grid} - o.2s)}{(C_{grid} - o.7s)}\right)}{ln(9.0)}$$
(5)

Analysene ble utført ved anvendelse av programmet SELNET, som er utviklet av Bent Herrmann (SINTEF Fiskeri og Havbruk) og benyttet i flere internasjonale forskningsprosjekter for å analysere trålseleksjonsdata (Sistiaga et al., 2010; Wienbeck et al., 2011).

Beregningen av 3 x 3-kovariansmatrisen for $L50_{grid}$, SR_{grid} og C_{grid} for individuelle hal er basert på bootstrapmetoden som er beskrevet for enkelthal i Millar (1993) ved hjelp av "Efron 95 % persentil" konfidensintervall (Efron 1982; Chernick 2007) med 10 000 bootstrap repetisjoner for hvert hal. Bruk av standard parametrisk metode basert på beregningen av Fisher Information Matrix (Wileman et al. 1996) ville ikke være gyldig for hal der C_{grid} er anslått å ha en verdi nær en av grensene (0 eller 1) (Collins og Lanza, 2010).

Basert på resultatene for enkelt hal ble middelseleksjonen undersøkt ved hjelp av en såkalt "Fryer-analyse". Her tas det hensyn til at seleksjonen kan variere fra hal til hal. Ved analysen ble det også undersøkt om det var statistisk signifikant effekt på seleksjonen av følgende variable vedrørende de enkelte hal: fangstvekt (FV), tauetid (TT), fangstrate (FR) og tilstedeværelse eller ikke av løftepanel (LP). Dette ble undersøkt på alle tre seleksjonsparameterne L50_{grid}, SR_{grid} og C_{grid}.

 C_{grid} er en viktig parameter i denne studien og den beskriver andelen av fisk som kommer i kontakt med seleksjonsinnretningen (rista i dette tilfelle) og gjennomgår en seleksjonsprosess. Hvis all fisk kommer i kontakt med seleksjonsinnretningen blir $C_{grid} = 1$, og seleksjonskurven starter på verdien 0 langs y-aksen. Hvis for eksempel 90 % av fisken kommer i kontakt med rista, blir $C_{grid} = 0.9$ og seleksjonskurven starter på 0.1 langs y-aksens. Figur 16 viser flere seleksjonskurver men forskjellig C_{grid} verdier.

3 Resultater

For de 31 halene som inngår i datamaterialet varierer fangstene av torsk fra 1 335 til 22 557 kg totalt, og fangstraten fra 890 til 20163 kg/time.

3.1 Operasjonelle data

Total ble det gjennomført 57 hal i perioden 30. oktober – 11. november 2013. En oversikt over alle hal med operasjonelle data er gitt i Tabell I og Tabell 2.

Hal 1-31 ble brukt til sammenligning av seleksjonsegenskapene til en 4-panels ristseksjon med og uten løftepanel. Forsøket ble gjennomført på fiskefeltene rundt Hopen. Her ble det brukt en enkelttrål med ristseksjon, oppsamlingspose over ristutslippet og småmasket innernett i sekken. En oversikt over forsøksoppsett, fangster og sampling av fisk er gitt i Tabell 2.

Hal 33-38 ble brukt til å gjennomføre undervannsobservasjoner av begge ristseksjonene. Et SIT kamera (modell: Kongsberg OEI3-I24) med opptaksenhet og kunstig lys ble montert inni ristseksjonen (2 meter foran rista) for å studere fiskeadferd under sorteringsprosessen. I disse halene ble det ikke brukt oppsamlingspose over ristseksjonen eller småmasket innernettet i sekken.

Hal 39-51 ble brukt til utprøving av den store fleksirista (i en oppskalert ristseksjon) og sammenligning av denne med en standard fleksirist i en vanlig 2-panels ristseksjon. I disse halene ble det ikke brukt oppsamlingsposeover ristseksjonen eller småmasket innernettet i sekken.

Tabell 1: Oversikt over alle gjennomførte hal med operasjonelle data og total fangst.

		Tauetid	Posision		Torsk
Dato	Hal nr.	(min)	Start	Slutt	(kg)
30.okt.2013	I	159	77° 04' N / 28° 54' Ø	76° 54' N / 29° 03' Ø	2 9
31.okt.2013	2	90	76° 13' N / 25° 27' Ø	76° 10' N / 25° 08' Ø	335
31.okt.2013	3	113	75° 45' N / 23° 59' Ø	75° 42' N / 23° 38' Ø	3 261
31.okt.2013	4	200	76° 13' N / 19° 57' Ø	76° 12' N / 19° 37' Ø	9 690
31.okt.2013	5	246	76° 12' N / 19° 36' Ø	76° ' N / 9° 35' Ø	8 722
01.nov.2013	6	249	76° 13' N / 19° 39' Ø	76° 17' N / 19° 38' Ø	9 047
01.nov.2013	7	252	76° 16' N / 19° 39' Ø	76° 13' N / 19° 51' Ø	7 937
01.nov.2013	8	274	76° 14' N / 20° 01' Ø	76° 19' N / 19° 46' Ø	7 477
01.nov.2013	9	278	76° 18' N / 19° 49' Ø	76° 20' N / 20° 51' Ø	4 481
02.nov.2013	10	265	76° 41' N / 23° 01' Ø	76° 43' N / 22° 52' Ø	6 982
02.nov.2013	11	260	76° 43' N / 22° 53' Ø	76° 47' N / 23° 03' Ø	7 514
02.nov.2013	12	265	76° 44' N / 23° 02' Ø	76° 48' N / 23° 06' Ø	7 433
02.nov.2013	13	108	77° 06' N / 27° 47' Ø	77° 11' N / 28° 03' Ø	7 192
03.nov.2013	14	107	77° 11' N / 28° 06' Ø	77° 09' N / 28° 11' Ø	17 224
03.nov.2013	15	133	77° 15' N / 28° 11' Ø	77° 05' N / 28° 14' Ø	5 183
03.nov.2013	16	181	77° 06' N / 28° 13' Ø	76° 58' N / 28° 35' Ø	10 963
03.nov.2013	17	229	70° 00' N / 28° 30' Ø	77° 06' N / 28° 26' Ø	7 724
03.nov.2013	18	245	77° 10' N / 28° 21' Ø	77° 17' N / 28° 23' Ø	14 681
03.nov.2013	19	250	77° 17' N / 28° 20' Ø	7/° 16' N / 28° 21' Ø	9 944
04.nov.2013	20	210	7/° 12' N / 28° 24' Ø	76° 54' N / 28° 33' Ø	6 /80
04.nov.2013	21	285	76° 49' N / 28° 41' Ø	76° 34° N / 29° 20° Ø	10 407
04.nov.2013	22	248	76 36 N / 29 18 Ø	76 49 N / 28 43 Ø	7 046
04.nov.2013	23	257	76 51 N / 28 36 Ø	76 30 N / 28 38 Ø	13 150
05.nov.2013	24	2//	76 37 N / 26 24 Ø	77 03 N / 26 26 Ø	7 / 20
05.nov.2013	25	192	77° 08' NI / 28° 15' Ø	77° 21' NI / 28° 15' Ø	10 775
05 nov 2013	20	172	76° 16' NI / 28° 11' Ø	74° 14' NI / 28° 10' Ø	10 510
05 nov 2013	27	132	70 10 N / 20 11 Ø	74° 14' NI / 28° 10' Ø	16 250
06 nov 2013	20	132	77° 12' N / 28° 17' Ø	77° 17' N / 28° 20' Ø	9 578
06 nov 2013	30	178	77° 15' N / 28° 21' Ø	77° 19' N / 28° 15' Ø	13 013
06.nov.2013	31	262	77° 18' N / 26° 16' Ø	77° 19' N / 28° 24' Ø	9 729
06.nov.2013	32	331	77° 24' N / 28° 45' Ø	77° 16' N / 28° 23' Ø	6 848
06.nov.2013	33	176	77° 16' N / 28° 36' Ø	77° 18' N / 28° 36' Ø	7 210
07.nov.2013	34	274	77° 21' N / 29° 07' Ø	77° 22' N / 29° 16' Ø	14 027
07.nov.2013	35	218	77° 23' N / 29° 18' Ø	77° 20' N / 29° 37' Ø	7 398
07.nov.2013	36	113	77° 21' N / 29° 39' Ø	77° 21' N / 29° 04' Ø	3 272
07.nov.2013	37	180	77° 21' N / 29° 14' Ø	77° 13' N / 29° 17' Ø	8 636
07.nov.2013	38	92	77° 14' N / 29° 19' Ø	77° 15' N / 29° 28' Ø	
07.nov.2013	39	236	77° 14' N / 29° 18' Ø	77° 15' N / 29° 28' Ø	13 146
08.nov.2013	40	253	77° 15' N / 29° 20' Ø	77° 12' N / 29° 21' Ø	22 210
08.nov.2013	41	116	77° 14' N / 29° 40' Ø	77° 12' N / 29° 28' Ø	3 785
08.nov.2013	42	186	77° 15' N / 29° 40' Ø	77° 10' N / 29° 11' Ø	4 958
08.nov.2013	43	187	77° 14' N / 28° 53' Ø	77° 03' N / 28° 34' Ø	7 3 1 0
08.nov.2013	44	178	77° 03' N / 28° 34' Ø	77° 03' N / 28° 34' Ø	7 477
09.nov.2013	45	67	77° 13' N / 28° 55' Ø	77° 12' N / 28° 44' Ø	2 031
09.nov.2013	46	220	77° 10' N / 28° 41' Ø	77° 06' N / 28° 46' Ø	6 202
09.nov.2013	4/	24/	7/° 04' N / 28° 42' Ø	7/° 00' N / 28° 37' Ø	7 026
09.nov.2013	48	61	75° 12' N / 32° 25' Ø	75° 09' N / 32° 16' Ø	8 8 18
U7.nov.2013	49	92	/5 U7 IN / 32" I/ Ø	75 04' IN / 32" 05 Ø	1/6/4
	50	48 40	75° 09' N / 32' 15' Ø	75° 04' N / 32° 00' 00' 00' 00' 00' 00' 00' 00' 00' 00	10 130
10.1109.2013	51	47	75° 04' NI / 32° 04' 0	75° U I I / 32 00 00 75° U I I / 32° 00 00	7 201
	52	112	75° ' N / 32° 25' /3	75° 05' NI / 32° 02' 0	10 030
10 nov 2013	53	117	75° 03' N / 32° 03' Ø	75° 10' N / 32° 15' 0	9 904
10.nov 2013	54	209	75° 08' N / 32° 11' Ø	74° 57' N / 31° 44' Ø	10 445
11.nov.2013	56	207	74° 54' N / 31° 38' Ø	75° 07' N / 31° 59' Ø	12 379
.nov.2013	57	219	75° 06' N / 31° 55' Ø	74° 53' N / 31° 30' Ø	10 485
				~ ~ ~ ~ ~ ~	

Tabell 2: Oversikt over forsøksoppsett, fangst og subsampling av fisk (proporsjonen av totalfangsten målt i hver enkelthal).

		Torsk						
Hal nr.	Trål		Hovedsekk		0	ppsanlingssel	k	Forsøk
		Målt	Talt	Subsamp	Målt	Talt	Subsamp	
Hal I	Babord trål (med løftepanel)	489	489	1,000	149	149	1,000	Seleksjon
Hal 2	Styrbord trål (uten løftepanel)	557	735	0,758	484	484	1,000	Seleksjon
Hal 3	Styrbord trål (uten løftepanel)	652	1546	0,422	361	605	0,597	Seleksjon
Hal 4	Babord trål (med løftepanel)	577	2012	0,287	419	419	1,000	Seleksjon
Hal 5	Babord trål (med løftepanel)	470	2156	0,218	379	856	0,443	Seleksjon
Hal 6	Styrbord trål (uten løftepanel)	542	2320	0,234	841	841	1,000	Seleksjon
Hal 7	Styrbord trål (uten løftepanel)	535	2056	0,260	374	835	0,448	Seleksjon
Hal 8	Babord trål (med løftepanel)	421	1715	0,245	881	881	1,000	Seleksjon
Hal 9	Babord trål (med løftepanel)	407	762	0,534	233	233	1,000	Seleksjon
Hal 10	Styrbord trål (uten løftepanel)	498	2257	0,221	606	922	0,657	Seleksjon
HallI	Styrbord trål (uten løftepanel)	688	1429	0,481	680	1667	0,408	Seleksjon
Hal 12	Babord trål (med løftepanel)	729	3769	0,193	480	3518	0,136	Seleksjon
Hal 13	Babord trål (med løftepanel)	543	3203	0,170	413	551	0.750	Seleksion
Hal 14	Styrbord trål (uten løftepanel)	767	6336	0.121	442	1032	0,428	Seleksion
Hal 15	Styrbord trål (uten løftepanel)	469	2627	0.179	596	596	1.000	Seleksion
Hal 16	Babord trål (med løftepanel)	634	3095	0.205	316	916	0.345	Seleksion
Hal 17	Babord trål (med løftepanel)	522	3298	0.158	480	1132	0 424	Seleksion
Hal 18	Styrbord trål (uten løftepanel)	490	5834	0.084	552	1439	0 384	Seleksion
	Styrbord trål (uten løftepanel)	680	5081	0 1 3 4	436	1878	0,301	Seleksion
	Babordtrål (mod løftopanol)	579	3329	0,134	770	801	0,252	Soloksion
	Babord trål (med løftepanel)	549	3299	0,174	408	666	0,701	Seleksion
	Styrbord trål (uton løftopanol)	500	3134	0,172	574	935	0,013	Seleksion
	Styrbord trål (uten løftepanel)	745	2000	0,160	3/4	2492	0,017	Seleksjon
	Styrbord trai (uten iørtepaner)	745	5070 5040	0,108	710	3672	0,122	Seleksjon
Hai 24	Babord trai (med løftepanel)	/45	5049	0,148	/18	2401	0,299	Seleksjon
Hai 25	Babord trai (med løttepanel)	521	5086	0,102	597	2546	0,234	Seleksjon
Hai 26	Styrbord trai (uten løftepanel)	691	/389	0,094	390	1158	0,337	Seleksjon
Hal 27	Styrbord tral (uten løftepanel)	537	8246	0,065	531	1358	0,391	Seleksjon
Hal 28	Babord tral (med løftepanel)	495	/2/9	0,068	441	1960	0,225	Seleksjon
Hal 29	Babord tral (med løftepanel)	552	3640	0,152	/96	12//	0,623	Seleksjon
Hal 30	Styrbord trai (uten løftepanel)	429	5760	0,074	481	2286	0,210	Seleksjon
Hal 31	Styrbord trål (uten løftepanel)	632	4539	0,139	632	1568	0,403	Seleksjon
Hal 32	Babord trål (med løftepanel)							
Hal 33	Babord trål (med løftepanel)							Filming
Hal 34	Styrbord trål (uten løftepanel)							Filming
Hal 35	Styrbord trål (uten løftepanel)							Filming
Hal 36	Babord trål (med løftepanel)							Filming
Hal 37	Babord trål (fleksirist)							Filming
Hal 38	Styrbord trål (stor fleksirist)							Filming
Hal 39	Styrbord trål (stor fleksirist)							Seleksjon
Hal 40	Babord trål (fleksirist)							Seleksjon
Hal 41	Babord trål (fleksirist)							Seleksjon
Hal 42	Styrbord trål (stor fleksirist)							Seleksjon
Hal 43	Styrbord trål (stor fleksirist)							Seleksjon
Hal 44	Babord trål (fleksirist)							Seleksjon
Hal 45	Babord trål (fleksirist)							Seleksjon
Hal 46	Styrbord trål (stor fleksirist)							Seleksjon
Hal 47	Styrbord trål (stor fleksirist)							Seleksjon
Hal 48	Babord trål (fleksirist)							Seleksjon
Hal 49	Babord trål (fleksirist)							Seleksjon
Hal 50	Styrbord trål (stor fleksirist)							Seleksjon
Hal 51	Styrbord trål (stor fleksirist)							Seleksjon
Hal 52	Babord trål (fleksirist)							•
Hal 53	Babord trål (fleksirist)							
Hal 54	Babord trål (fleksirist)							
Hal 55	Babord trål (fleksirist)							
Hal 56	Babord trål (fleksirist)							
Hal 57	Babord trål (fleksirist)							
	V 17							

PROSJEKTNR SFH 830237 RAPPORTNR A23178 **VERSJON** 2014-03-28

TRONSO

3.2 Seleksjonsresultater

Tabell 3 og 4 viser verdier for L50_{grid}, SR_{grid} og C_{grid} for ristseksjonene med og uten løftepanelet. C_{grid} verdiene for ristseksjonen med løftepanelet varierer mellom 0.62 og 1.0, mens de for seksjonen uten løftepanelet varierer mellom 0.42 og 0.91, noe som indikererer at løftepanelet haren effekt på kontakten av fisk med risten. Resultatene viser også at den anvendte seleksjonsmodellen (*CLogit*) kan beskrive de eksperimentelle data tilfredsstillende da p-value > 0.05 for alle hal. P-verdien i resultatene viser den statistiske usikkerheten i analysen. En p-verdi > 0.05 vil bety at forskjellen mellom modell resultatet og eksperimentelle data er med 95% sikkerhet tilfeldig.

Hal	L50grid	SR_{grid}	Cgrid	AIC	P-Value	Deviance	DOF
	(cm)	(cm)					
Ι	50,47	8,32	0,93	176,39	1,00	32,86	77
4	53,08	7,12	0,88	214,29	0,96	52,56	72
5	50,34	9,76	0,91	276,26	0,93	56,10	73
8	50,10	8,22	0,80	476,40	1,00	35,19	74
9	48,57	8,96	0,75	236,00	0,98	54,94	78
12	55,85	9,95	0,62	1454,61	0,49	54,57	55
13	49,84	6,22	0,68	559,77	0,87	49,70	62
16	53,89	6,84	0,77	527,12	1,00	33,53	70
17	49,82	7,85	1,00	474,36	1,00	29,60	64
20	48,70	7,57	0,68	849,27	1,00	25,52	61
21	51,18	6,64	0,92	316,79	0,97	49,27	70
24	52,48	6,31	0,65	1180,96	0,94	48,05	65
25	52,12	7,41	0,80	812,58	1,00	38,53	64
28	51,85	7,59	0,74	552,64	1,00	32,71	59
29	51,92	6,88	0,81	593,85	0,92	46,46	61

Tabell 4: Resultatene for ristseksjon **uten** løftepanel

Hal	L50grid	SRgrid	Cgrid	AIC	P-Value	Deviance	DOF
	(cm)	(cm)					
3	53,89	5,37	0,42	930,54	0,99	36,50	59
6	49,10	8,77	0,71	618,66	1,00	41,65	78
7	49,05	9,94	0,72	478,56	1,00	39,08	73
10	53,50	9,25	0,47	1219,60	1,00	32,83	65
11	52,45	11,98	0,76	1504,61	0,99	35,28	58
14	50,62	7,83	0,66	692,25	0,86	49,19	61
15	50,92	7,05	0,62	640,57	1,00	32,32	63
18	49,82	8,73	0,91	603,11	0,58	61,19	64
19	51,05	6,96	0,63	897,58	1,00	29,76	63
22	49,56	9,06	0,86	525,18	0,96	46,11	65
23	52,72	7,80	0,68	1062,58	0,92	49,59	65
26	46,74	8,72	0,73	604,81	1,00	37,41	63
27	50,30	7,70	0,71	578,97	0,73	53,77	61
30	51,40	8,00	0,78	451,88	0,70	53,73	60
31	46,29	10,80	0,91	720,75	0,80	51,58	61

Basert på resultatene for enkelthal (Tabell 3 og 4) ble middelseleksjon undersøkt ved hjelp av en såkalt "Fryer-analyse". Her tas hensyn til at seleksjonen kan variere fra hal til hal. Ved analysen ble det også undersøkt om det var statistisk signifikant effekt på seleksjonen av følgende variabler vedrørende de enkelte hal: fangstvekt (FV), tauetid (ST) og fangstrate (FR). Dette ble undersøkt for alle de tre seleksjonsparameterne L50_{grid}, SR_{grid} og C_{grid}. I alt ble flere forskjellige modeller testet som kan viderekobles utfra en lineær innflytelse på seleksjonsparameterne. Det ble ikke funnet noen signifikant effekt på noen av seleksjonsparametrene av de undersøkte variablene. Seleksjonen ble derfor beskrevet uavhengig av ovenstående variable. Følgende middelseleksjon ble funnet (Tabell 5) (Figur 16 og 17).

Seleksjons parameter	Uten løftepanelet	Med løftepanelet
L50 _{grid} (cm)	50.85 (49.70 – 52.00)	51.46 (50.43 – 52.49)
SR _{grid} (cm)	7.91(7.23 – 8.57)	7.19 (6.67 – 7.71)
C_{grid}	0.66 (0.60 – 0.72)	0.82 (0.76 – 0.88)

Tabell 5: Middel seleksjon med k	confidensintervallet for torsk:
----------------------------------	---------------------------------

Figur 16: Retensjonskurver for torsk for ristseksjon med løftepanel. Enkelthal er vist med sort, mens den tykke, røde kurven gir midlere retensjonskurve for forsøket. Den røde kurven starter på 0.18 på y-aksen, altså er C_{grid} = 1-0.18 = 0.82.

PROSJEKTNR
SFH 830237

RAPPORTNR A23178 VERSJON 2014-03-28

Figur 17: Retensjonskurver for torsk for ristseksjon uten løftepanel. Enkelthal er vist med sort, mens den tykke, røde kurven gir midlere retensjonskurve for forsøket.

3.3 Løftepanelets betydning for seleksjon av torsk

Resultatene fra forsøket ga følgende verdier for midlere kontaktsannsynlighet C_{grid} og tilhørende 95% konfidensintervall:

- Uten løftepanel: C_{grid} = 0,66 med konfidenseintevall (0,60 til 0,72)
- Med løftepanel: C_{grid} = 0,82 med konfidenseintervall (0,76 til 0,88)

Dette viser en signifikant lavere kontaktsannsynlighet for seleksjonen uten løftepanel enn med løftepanel. Resultatet for tilfellet med løftepaneler i tråd med verdier funnet i tidligere studier: $C_{grid} = 0.846$ (0.733 til 0.959) for en 2-panel enkeltristseksjon med løftepanel (Sistiaga et al 2010), og $C_{grid} = 0.976$ (0.952 til 0.999) for en 4-panel enkeltristseksjon med løftepanel (Grimaldo et al 2013).

Forskjellen i virkningen av løftepanelet på kontakten (C_{grid}) mellom en seksjon med- og uten løftepanelet er: 0,16 (0.82 - 0.66) med konfidenseintervall (0,09 til 0,23). Dette betyr at løftepanelet øker kontaktsannsynligheten C_{grid} med 0.16, dvs en økning på 24 % fra 0.66 til 0.82. Løftepanelet har altså en betydelig effekt på kontaktsannsynligheten.

3.4 Løftepanels betydning for seleksjon av hyse

For hyse var det kun tre hal der fangsten var stor nok til at det kunne beregnes retensjonskurve; 2 med løftepanel og I uten løftepanel. Mellom-hal variasjonen var imidlertid for stor mellom disse halene til at det er mulig å konkludere noe om effekten av løftepanelet på seleksjonen av hyse.

3.5 Undervannsobservasjoner

Undervannsobservasjoner viste at begge de to fire-panels ristseksjonene opprettholdt stabil geometri under tråling og at de hadde stort tversnittareal (ca. 1,4 m i diameter). Det ble observert at stor torsk (> 70 cm) kunne svømme foran rista, men bare i noen få sekunder før de falt bak i sekken. Fisk under 70 cm klarte ikke å holde seg svømmende foran rista. Ingen oppsamling av fisk (hverken foran eller bak rista) ble observert under tråling.

3.6 Erfaringer med den nye fleksiristseksjonen

Etter de første halene med den store fleksiristseksjonen, var det nokså åpenbart at denne ikke fungerte som forventet. Den nye ristkonstruksjonen ble for svak og flere spilene knakk i løpet av noen få hal. I tillegg ble det observert at tverrbåndene forskjøv seg. Dermed ble avstanden mellom dem for stor samtidig som spilene ble mer fleksible, slik at større fisk kunne slippe gjennom.

I området der forsøkene med den store fleksirista ble gjort var det bare stor fisk. Disse halene ga derfor ingen informasjon om seleksjonsegenskapene til rista. Undervannsobservasjoner viste likevel en fint utspent 4-panels fleksiristseksjon, med stort tverrsnitts areal (ca. I.4 m i diameter). Ingen fisk i seksjonen ble observert å stoppe foran rista, og de gikk fort forbi (under) og mot sekken.

4 Diskusjon og konklusjoner

Forsøkene med enkeltrist med og uten løftepanel ble utført i et område der størrelsen på torsk var svært godt egnet for seleksjonsforsøk, med mye fisk i det størrelsesintervallet 35-65 cm. Resultatene viser at løftepanelet har en betydelig effekt på parameteren C_{grid} ("ristkontakt" - sannsynligheten for at fisk kommer i kontakt med rista), og dermed på seleksjonen av torsk. Løftepanelet øker kontaktsannsynligheten med 0.16 eller 16% (0.82 – 0.66), og dette er en forbedring på 24 %. Dette betyr i praksis at en mer undermåls fisk blir fanget og ender i sekken når det fiskes med en ristseksjon uten løftepanel.

Det var ingen indikasjoner på opphopning av fisk ved rista, selv med fangstrater på opptil 20.163 kg fisk per time. Dette kan skyldes bedre gjennomstrømning i seksjonen på grunn av det modifiserte løftepanelet (laget i 80 mm kvadratmaskenotlin i stedet for 60 mm diamantmaskenotlin), bruk av et betydelig mindre løftepanel sammenlignet med det i en 2-panels ristseksjon (dvs. at løftepanelet er strammere og geometrisk bedre definert i en 4-panels seksjon kontra i en 2-panels seksjon), det betydelig større tversnittarealet 4panels seksjonen kontra en vanlig 2-panels seksjon.

Vi opplevde imidlertid det samme problemet for disse 4-panels-seksjonene som for dagens 2-panels ristseksjon mht. fangstkontroll; mengdesensorene montert på sekken ga heller ikke her et korrekt bilde av totalfangsten. Tre sensorer ble montert på sekken og bare den som ble plassert bakerst på sekken ble aktivert når fangstmengden oversteg 10 tonn. Dette tyder på at mye fisk fortsatt står i forlengelsen eller fremst i sekken i lange perioder. I noen hal ble det observert mye fisk i forlengelsen og fremst i sekken når trålen kom til overflaten, og at de først falt bakover i sekken da trålen ble dratt ombord. At fisken ikke faller bak i sekken reduserer også effektiviteten til diverse fangstkontrollinnretninger som er tiltenkt å bli plassert i sekken og overlevelsesmuligheten til fisken som eventuelt først slippes ut ved overflaten. Dette kan skyldes at selve sekkene var laget i 2-panels konstruksjon, og at disse også bør utformes som 4-panels konstruksjoner for å sikre best mulig areal og gjennomstrømning.

Det største problemet med den store fleksirista var at den ikke tålte behandlingen på dekk, og etter noen få hal knakk flere spillene. Dette skjedde ikke med den vanlige fleksirista.

Takk!

Takk til mannskapet på MTr. "Ramoen" for hjelpen om bord. Takk også til Jóan Karl Joensen fra Norges Fiskerihøgskole, UiT, og Sara Pötter fra Fiskeridirketoratet. Vi retter også takk til Fiskeri og Havbruksnæringens Forskningsfond (FHF) for finansiell støtte til SINTEF for å kunne delta på dette toktet, Norges Forskningsråd (HAVKYST program) gjennom prosjektet 216515/E40 "Development of catch control devices for trawls" for å kunne bidra til bearbeiding av seleksjonsdata og utarbeiding av denne rapporten.

Dette arbeidet er gjennomført i regi av Fiskeridirektoratet v/ Utviklingsseksjonen og finansiert gjennom "Ordningen med fiskeforsøk og utviklingstiltak".

Bilde I: Et fornøyd forskerteam om bord på "Ramoen" etter et vellykket tokt. Fra venstre: Jóan Karl Joensen (Norges Fiskerihøgskole), Terje Jørgensen (Havforskningsinstituttet), Dagfinn Lilleng (Fiskeridirektoratet), Eduardo Grimaldo (SINTEF Fiskeri og Havbruk), og Sarah Pötter (Fiskeridirektoratet).

Referanser

- Collins L.M., Lanza S. T., 2010. Latent class and latent transition analysis: with applications in the social, behavioral, and health sciences. New York, John Wiley & Sons.
- Chernick M.R., 2007. Bootstrap methods: A guide for practitioners and researchers, second edition. Wiley Series in Probability and Statistics, Wiley, New York.
- Efron B., 1982. The jackknife, the bootstrap and other resampling plans. SIAM Monograph No 38, CBSM-NSF.
- Gjøsund, S.H., Grimaldo, E., Sistiaga, M., Hansen, K., 2013. Hastighetmålinger i 2- og 4-panel enkeltrist seksjoner. Forsøk med fullskala enkeltrist-seksjoner gjennomført i testtanken i Hirtshals 3-7 juni 2013. SINTEF rapport A24698-Åpent, 27 sider.
- Grimaldo, E., Herrmann, B., Vollstad, J., 2013. Seleksjonsforsøk med 55 mm enkeltrist i firepanelkonstruksjon. Rapport fra toktet ombord MTr "Arctic Swan" i perioden 23.november – 03.desember 2012 i fiskefeltene rundt Hopen, Storfjorden og Bjørnøya. SINTEF rapport, A24000, Åpen, 24 sider.
- Millar R.B., 1993. Incorporation of between-haul variation using bootstrapping and nonparametric estimation of selection curves. Fish. Bull. 91, 564–572.
- Millar R.B., Fryer I R.B., 1999. Estimating the size selectivity of towed gears, traps, nets and hooks. Rev. Fish. Biol. Fish. 9, 89-116.
- Sistiaga M., Herrmann B., Grimaldo E., Larsen R.B., 2010, Assessment of dual selection in grid based selectivity systems. Fish. Res. 105, 187–199.
- Valdemarsen, J.W., Øvredal, J.T., Åsen, A., Gjøsund, S.H., Hansen, K., 2011. Trålfangst: Årsaken til redusert effektivitet for enkelte tråltyper når fangsten øker. Rapport fra havforskningen nr. 2-2011, Institute of Marine Research.
- Wienbeck H., Herrmann B., Moderhak W., Stepputtis D., 2011. Effect of netting direction and number of meshes around on size selection in the codend for Baltic cod (Gadus morhua). Fish. Res. 109, 80–88.
- Wileman D.A., Ferro R.S.T., Fonteyne R., Millar R.B. (Eds.), 1996. Manual of methods of measuring the selectivity of towed fishing gears. ICES Coop. Res. Rep. No. 215.

Anneks A: Monteringsspesifikasjoner for 4-panels enkeltristseksjon.

PROSJEKTNR RAPPORTNR VERSJON 26 av SFH 830237 A23178 2014-03-28 26 av	28
---	----

Anneks B: Monteringsspesifikasjoner for 4-panels fleksiristseksjon.

PROSJEKTNR RAPPORTNR VERSJON SFH 830237 A23178 2014-03-28

FISKERI- OG HAVBRUKSNÆRINGENS FORSKNINGSFOND

Teknologi for et bedre samfunn www.sintef.no